

Electrochemistry

(Past Year Topical Questions 2010-2015)

Oct/Nov 2010 (23)/Q2

- (d) Most of the sulfur that is used in the Contact process is recovered from sulfur compounds present in crude oil and natural gas by using the Claus process.
 - (i) In this process, about one third of the hydrogen sulfide, H₂S, present in the oil or gas, is converted into sulfur dioxide, SO₂.

Balance the equation for this reaction.

$$\dots$$
H₂S + \dots O₂ \rightarrow \dots SO₂ + \dots H₂O

(ii) The SO₂ formed is then reacted catalytically with the remaining H₂S, producing sulfur and water.

$$2H_2S + SO_2 \rightarrow 3S + 2H_2O$$

What are the oxidation numbers of each of the sulfur-containing substances in this reaction?

Which substance is reduced? Explain your answer.

substance

explanation[3]

May/June 2011 (22)

- 4 Chlorine is manufactured by electrolysis from brine, concentrated aqueous sodium chloride.
 - (a) (i) Describe, with the aid of a fully labelled diagram, the industrial electrolysis of brine in a diaphragm cell. State what each electrode is made of and show clearly the inlet for the brine and the outlets for the products.

May/June 2013 (23)/Q1

	(d)		Carbon disulfide reacts with nitrogen monoxide, NO, in a 1:2 molar ratio. A yellow solid and two colourless gases are produced.								
		(i)	Construct a balanced equation for the reaction.								
		(ii)	What is the change in the oxidation number of sulfur in this reaction?								
			from to								
Oct/	Nov :	2013									
3	Chl	orine	gas is manufactured by the electrolysis of brine using a diaphragm cell.								
	(a)	(i)	Write half-equations, including state symbols, for the reactions occurring at each of the electrodes of a diaphragm cell.								
			anode								
			cathode								
		(ii)	In the diaphragm cell, the anode is made of titanium and the cathode is made of steel.								
			Suggest why steel is never used for the anode.								

[3]

May/June 2014 (21)/Q3

(b) The diagram below is a simplified representation of a diaphragm cell.

(i) Identify each of the products.

В	
С	
_	

[3]

(ii) Give the equations for the two electrode reactions.

anode	·······
cathode	

[2]

May/June 2015 (22)/Q1

(c)	Magnesium ca	n be	produced	by	electrolysis	of	magnesium	chloride	in	a	molten	mixture	of
	salts												

(i)	Give equations for the anode and cathode reactions during the electrolysis of molten magnesium chloride, ${\rm MgC}l_2$.
	anode
	cathode[2]
	e electrolysis is carried out under an atmosphere of hydrogen chloride gas to convert any gnesium oxide impurity into magnesium chloride.
(ii)	An investigation of the reaction between magnesium oxide and hydrogen chloride gas showed that an intermediate product was formed with the composition by mass Mg, 31.65%; O, 20.84%; H, 1.31% and CI, 46.20%.
	Calculate the empirical formula of this intermediate compound.
	empirical formula [2]