

Reaction Kinetics

(Past Year Topical Questions 2010-2015)

May/June 2010 (21)

2 The diagram below shows, for a given temperature T, a Boltzmann distribution of the kinetic energy of the molecules of a mixture of two gases that will react together, such as nitrogen and hydrogen.

The activation energy for the reaction, E_a , is marked.

(a) On the graph above,

- (i) draw a new distribution curve, clearly labelled T', for the same mixture of gases at a higher temperature, T';
- (ii) mark clearly, as H, the position of the activation energy of the reaction at the higher temperature, T'.

[3]

(b)	Explain the meaning of the term activation energy.

	ral
	eaction between nitrogen and hydrogen to produce ammonia in the Haber process is ample of a large-scale gaseous reaction that is catalysed.
(c)	 State the catalyst used and give the operating temperature and pressure of the Haber process.
	catalyst
	temperature
	pressure
(On the energy axis of the graph opposite, mark the position, clearly labelled C of the activation energy of the reaction when a catalyst is used.
(i	 Use your answer to (ii) to explain how the use of a catalyst results in reactions occurring at a faster rate.
	[3]

(d) Two reactions involving aqueous NaOH are given below.

In order for reaction 1 to occur, the reagents must be heated together for some time. On the other hand, reaction 2 is almost instantaneous at room temperature.

Suggest brief explanations why the rates of these two reactions are very different.

reaction 1		 	

reaction 2			

May/June 2012 (22)/Q2

(c) The operating conditions for this reaction are as follows.

pressure 200 atmospheres (2 × 10⁷ Pa)

temperature 600 K

catalyst oxides of Cr, Cu, and Zn

In the spaces below, explain how **each** of these conditions affects the **rate of formation** of methanol.

pressure	
	<i>y</i>
temperature	
catalyst	

[6]

Oct	/Nov 2	2012 (23)/Q3
	(c)	What will be the effect on the rate of the reaction of increasing the pressure at which it is carried out? Explain your answer.
		[2
Oct	/Nov 2	2014 (23)
2		Haber process for the manufacture of ammonia, NH ₃ , was originally devised at the start of the century and was developed into a full-scale industrial process by Carl Bosch in 1913.
		key step in the process is the reversible reaction of nitrogen and hydrogen in the presence of con catalyst.
		$N_2(g) + 3H_2(g) \implies 2NH_3(g)$ $\Delta H = -92 \text{ kJ mol}^{-1}$
		The hydrogen for this reaction can be formed by reacting methane with steam, during which carbon monoxide is also produced. Write an equation for this reaction.
		[1

(b) Use the Boltzmann distribution shown to explain why a catalyst increases the rate of this reaction.

(d) The Haber process is typically carried out at a temperature of 400 °C.

(i)	With reference to Le Chatelier's Principle and reaction kinetics, state and explain one advantage and one disadvantage of using a higher temperature.							
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							