

2. Biological Molecules

Carbohydrates:

- Sugar polymers
- Molecules contain C, H, O atoms
- H atoms are twice as many as C or O atoms (C₆H₁₂O₆)

Carbohydrates - Monosaccharides, disaccharides

Monosaccharides

- The simplest carbohydrates
- They are sugar: C = 3 = triose C = 4 = tetrose C = 5 = pentose C = 6 = hexose
- Examples of hexose sugars: glucose, fructose, galactose (C₆H₁₂O₆)
- Molecules often have the form of a ring, made up of some C atoms and one O atom.
- Glucose molecules has 2 forms: α-glucose and β-glucose.

Disaccharides

• Different disaccharides can be formed by linking different monosaccharides. The bond that joins them together = **glycosidic bond.**

Disaccharide	Monosaccharides
Maltose	Glucose + Glucose
Lactose	Glucose + Galactose
Sucrose	Glucose + Fructose

• Condensation reactions (dehydration): 2 monosaccharides covalently joined; H₂0 is formed.

A Condensation Reaction between Two Monosaccharides

- **Hydrolysis reaction** (splitting by water): disaccharides are split into 2 monosaccharides by breaking the glycosidic bond; a molecule of H₂O is added.
- All monosaccharides and some disaccharides are **reducing sugars** (reduce blue Benedict's solution to produce an orange-red precipitate). Sucrose is a **non-reducing sugar**.

Carbohydrates – Polysaccharides

- Molecules contain hundreds/thousands of monosaccharides linked into long chains.
 - Molecules are enormous --> the majority do not dissolve in water --> good for **storing energy** (**starch** and **glycogen**) or for **forming strong structures** (**cellulose**).

	Amylose	Amylopectin	Glycogen	Cellulose	
Source	Plant	Plant	Animal	Plant	
Subunit	α-glucose	α-glucose	α-glucose	β-glucose	
Bonds (glycosidic bonds)	α-1,4	α-1,4- α-1,6-	α-1,4- α-1,6-	β-1,4-	
Branches	No	Yes	Yes	No	
Illustration	مممع	巡	黎	00000000000000000000000000000000000000	

• H bonds between chains --> very strong **microfibrils** --> cell wall will not break easily if the plant cell absorbs water; difficult to digest (few organisms have enzyme that can break the β 1-4 bonds).

Lipids:

- Include **triglycerides** + **phospholipids**.
- Molecules contain C, H, O atoms
- Very small proportion of O.
- Insoluble in water.

Sickle Cell Anaemia

An example of a mutation is a change in the gene that codes for one of the polypeptides in a Hb molecule. In the genetic disease **sickle cell anaemia**, the gene that codes for the β polypeptide has the base **T** where it should have the base **A**. This means that one triplet is different, so a different amino acid is used when the polypeptide chain is constructed on a ribosome.

These amino acids are on the outside of the Hb molecule when it takes up its tertiary and quaternary shapes.

- **Glutamic acid** is a hydrophilic amino acid. It interacts with water molecules, helping to make the haemoglobin molecule soluble.
- Valine is a hydrophobic amino acid. It does not interact with water molecules, making the haemoglobin molecule less soluble.

*Q: Explain how a single change in the DNA triplet for the sixth amino acid of the gene coding for the \(\beta \) chain leads to the production of a different amino acid sequence.

9. Gas Exchange

The Gas Exchange System

Airway	Number	Approximate diameter	Cartilage	Goblet cells	Smooth muscle	Cilia	Site of gas exchange
trachea	1	1.6 cm	yes	yes	yes	yes	no
bronchus	2	1.2 cm	yes	yes	yes	yes	no
terminal bronchiole	48 000	1.0 mm	no	no	yes	yes	no
respiratory bronchiole	300 000	0.5 mm	no	no	no	a few	no
alveolar duct	9 × 10 ⁶	400 µm	no	no.	no	по	yes
alveoli	3×10^{9}	250 µm	no	no	no	no	yes

- Cartilage provides support and prevents the tubes collapsing when the air pressure inside them is low.
 - C-shaped rings of cartilage in trachea Irregular blocks of cartilage in bronchus
- Cillated epithelium sweep mucus upwards towards the mouth, helping to prevent dust particles and bacteria reaching the lungs.
- Goblet cells secrete mucus, which traps dust particles and bacteria.
- Smooth muscle When it contracts, reduces the diameter of the tubes. During exercise it relaxes, widening the tubes so more air can reach the lungs.
- Elastic fibres stretch to allow the alveoli and airways to expand and recoil to reduce the volume of alveoli and expel air out of the lungs.

*Q: Explain how alveoli are adapted for gas exchange.

```
ignore moist
correct ref. to diffusion of, carbon dioxide / oxygen; A absorb / lose / AW
(many alveoli) large surface area;
surrounded by, (many) capitlaries / capitlary network / AW;
short diffusion distance (between air and blood);
blood maintains concentration gradient;
epithelium / alveolar wall / AW, thin / squamous; A alveolus one cell thick
A alveolus has a thin wall
R cell wall e.g. alveolar cell wall is thin
idea that very little between, epithelium and endothelium / AW;
e.g. alveolus and capitlary are close together
```


Monoclonal antibodies

*Q: Outline how monoclonal antibodies are produced.

- 1 antigen, introduced / AW, into, (small) mammal; A named small mammal
- 2 B-lymphocytes / B cells / plasma cells / splenocytes / antibody-producing lymphocytes, are taken / are isolated (from the spleen / lymph nodes);
- 3 (these) cells are fused / AW, with, myeloma / cancer, cells;
- 4 hybridoma cells / hybridomas, formed ; R hybridised cells / hybrid cells
- 5 hybridoma cell, is cloned / AW;
- 6 screening / testing, for hybridoma that produces desired antibody;
- 7 ref. to scaling up / large-scale production / grow in a fermenter;
- 8 AVP; e.g. fusion using, fusiogen / polyethylene glycol / PEG / electric current (electrofusion) / (Sendai) virus HAT medium, for, hybridoma growth / inhibiting myeloma growth humanisation of monoclonal antibody

Application of monoclonal antibodies

Diagnosis	- Can be used to locate the position of blood clots in the body
	- A radioactive chemical that produces gamma radiation is attached to each antibody molecule to make radioactively labeled antibodies
	- Bind to fibrin with which they come into contact
	- A gamma ray camera is used to detect the exact position
	- Other: detect cancer cells
Treatment	 Trastuzumab → treat some breast cancers → binds to a receptor protein that is produced in abnormal quantities in the cell surface membrane of cancer cells → marks them out for destruction by the immune system Ipilimumab → therapy for melanoma (skin cancer) Infliximab → treat rheumatoid arthritis (autoimmune disease) Rituximab → control overproduction of B-lymphocytes (leukaemias)

*Q: Suggest the advantages of using monoclonal antibodies in diagnosis of disease.

- monoclonal antibodies used all have the same specificity; R 'are specific' unqualified
- 2 detect only one, antigen / epitope;
- 3 can distinguish between different, pathogens / strains of, pathogens; A types of cancer cells 4 can be, labelled / tagged / marked / AW; e.g. with fluorescent label
- monoclonal antibodies can detect location of, tissues expressing antigen / cancer cells / blood clots; A idea of locating areas of infection
- fast(er) (diagnosis);
- can detect antibody levels (e.g. HIV);
- 8 AVP ; e.g. some pathogens cannot be cultured 1 ref. to cost