Chapter 5: Chemical Energetics • Exothermic vs. Endothermic | Exothermic | Endothermic | | |--|--|--| | Chemical reaction that releases energy to the | Chemical reaction that absorbs energy from the | | | surrounding | surrounding | | | Temperature of the surrounding increases | Temperature of the surrounding decreases | | | Reaction Progress activation energy Reactants energy released Reaction Progress | activation energy Reactants energy absorbed Reaction Progress | | | $\Delta H = negative sign$ | $\Delta H = positive sign$ | | | Bond forming | Bond breaking | | # • Definition table | Enthalpy Changes | Definition | Equation | Exo/Endo | |--|---|----------|----------| | Standard Enthalpy
Change of Reaction | Enthalpy change The amount of reactants shown in the equation react to give products Under standard condition | | | | Standard Enthalpy
Change of Formation | Enthalpy change 1 mole of a compound is formed from its elements Under standard conditions | | | | Standard Enthalpy
Change of Combustion | Enthalpy change When 1 mole of substance is burnt in excess oxygen Under standard condition | | | | Standard Enthalpy
Change of
Neutralisation | Enthalpy change When 1 mole of water is formed by the reaction of an acid with an alkali Under standard condition | | | | Standard Enthalpy
Change of Solution | - Enthalpy change | | | | | When 1 mole of solute is dissolved in a solvent to form an infinitely dilute solution Under standard condition | |--|---| | Standard Enthalpy
Change of Hydration | Enthalpy change When 1 mole of a hydrated salt is formed from 1 mole of the anhydrous salt Under standard condition | | Standard Enthalpy
Change of Atomisation | Enthalpy change When 1 mole of gaseous atoms is formed from its element Under standard condition | | Bond Energy | The energy required to break 1 mole of covalent bonds between 2 atoms In gaseous state | • Hess Law $$\begin{split} \Delta H_{reaction}^{\ominus} &= \sum \Delta H_{\mathbf{f}\,(products)}^{\ominus} - \sum \Delta H_{\mathbf{f}\,(reactants)}^{\ominus} \\ \Delta H_{reaction}^{\ominus} &= \sum \Delta H_{\mathbf{c}\,(reactants)}^{\ominus} - \sum \Delta H_{\mathbf{c}\,(products)}^{\ominus} \\ \text{Bond Energy} &= \text{Bond energy (reactants)} - \text{Bond energy (products)} \end{split}$$ $$Q = mc\Delta T \ (\Delta T = final\ temperature - initial\ temperature)$$ $$\Delta H = \frac{-mc\Delta T}{n}$$ | Enthalpy Change of Neutralisation | Enthalpy Change of Solution | Enthalpy Change of Combustion | |--|---------------------------------------|--------------------------------------| | 20cm ³ of 0.5 M of HCl mixed with | 0.5g NaOH is dissolved in | 5g of butanol – complete | | 20cm ³ , 0.5M of NaOH | 500cm ³ of distilled water | combustion | | $\Delta T = 8 ^{\circ}C$ | $\Delta T = 5$ °C | To heat 200g of distilled water | | | | $\Delta T = 15 ^{\circ}C$ | #### Exercises: Determine ΔH_r of 2 CO₂ + 5 H₂ \rightarrow C₂H₂ + 4 H₂O, given: $\Delta H_f CO_2 = -393.5 \text{ kJmol}^{-1}$ $\Delta H_f H_2 = 0.0 \text{ kJmol}^{-1}$ $\Delta H_f C_2 H_2 = 226.7 \text{ kJmol}^{-1}$ $\Delta H_f H_2 O = -241.8 \text{ kJmol}^{-1}$ Determine ΔH_f of C_3H_8O , given: $\Delta H_c C_3 H_8 O = -2010 \text{ kJmol}^{-1}$ $\Delta H_c C = -394 \text{ kJmol}^{-1}$ $\Delta H_c H_2 = -286 \text{ kJmol}^{-1}$ ### Past Year Topical Questions Oct/Nov 2022 (21) Q3 (d) Sulfur, S_8 , reacts with chlorine to form several different chlorides. The most common are S_2Cl_2 and SCl_2 . SCl_2 forms when sulfur reacts with an excess of chlorine. reaction 1 $$S_8(s) + 4Cl_2(g)$$ $$S_8(s) + 4Cl_2(g) \rightarrow 4S_2Cl_2(l)$$ $\Delta H_r = -58.2 \text{ kJ mol}^{-1}$ $$S_2Cl_2(I) + Cl_2(g) \rightleftharpoons 2SCl_2(I)$$ $\Delta H_r = -40.6 \text{ kJ mol}^{-1}$ $$\Delta H_{\rm r} = -40.6 \,\rm kJ \, mol^{-1}$$ (ii) Calculate the enthalpy change of formation, $\Delta H_{\rm f}$, of SC $l_2(I)$. You may find it useful to use Hess's Law to construct an energy cycle. enthalpy change of formation of $SCl_2(I)$, $\Delta H_f = \dots kJ \text{mol}^{-1}$ [2] #### May/June 2019 (11) 8 Two reactions and their enthalpy changes are shown. $$2C(s) + 2H_2(g) \rightarrow C_2H_4(g) \qquad \Delta H^{\oplus} = +52.2 \text{ kJ mol}^{-1}$$ $$C_2H_2(g) + H_2(g) \rightarrow C_2H_4(g) \qquad \Delta H^{\oplus} = -175.8 \text{ kJ mol}^{-1}$$ These data can be used to calculate the enthalpy change for the reaction shown. $$2C(s) + H_2(g) \rightarrow C_2H_2(g)$$ $\Delta H^e = X$ What is the value of X? - A -228.0 kJ mol⁻¹ - B -123.6 kJ mol⁻¹ - C +123.6 kJ mol⁻¹ - D +228.0 kJ mol⁻¹ ## Chemical Properties of Group 7 elements ## (i) Oxidising and reducing power | Halogen | Oxidizing Power / | Halide Ion | Reducing Power / | |-----------------|------------------------|------------|--------------------------| | | Reduction | | Oxidation | | F ₂ | -Decreases | F- | -Increases | | Cl ₂ | -Increasing number of | Cl- | -Increasing number of | | Br_2 | electron-filled shells | Br- | electron-filled shells | | I_2 | going down the group | I- | going down the group | | | -Increasing shielding | | -Increasing shielding | | | effect | | effect | | | -Weaker nuclear | | -Weaker nuclear | | | attraction | | attraction | | | -Harder to attract | | -Easier to lose electron | | | electron | | | #### (ii) Silver nitrate and nitric acid | Silver Halide | Colour | Reaction with Ammonia | Solubility in ammonia | |---------------|--------|------------------------------------|--| | AgCl | White | $AgCl(s) + 2NH_3 (aq) \rightarrow$ | Soluble in dilute, aqueous NH ₃ to give a | | | | $[Ag(NH_3)_2]+(aq)+Cl^{-}(aq)$ | colourless solution | | AgBr | Cream | $AgBr(s) + 2NH_3 (aq) \rightarrow$ | Soluble in concentrated NH ₃ only | | | | $[Ag(NH_3)_2]+(aq)+Br^-(aq)$ | | | AgI | Yellow | - | Insoluble | - Ammonia acts as a ligand - A **ligand** is an ion or molecule that donates its lone pair electron through coordinate bond/dative bond to metal ion