Chapter 5: Chemical Energetics

• Exothermic vs. Endothermic

Exothermic	Endothermic	
Chemical reaction that releases energy to the	Chemical reaction that absorbs energy from the	
surrounding	surrounding	
Temperature of the surrounding increases	Temperature of the surrounding decreases	
Reaction Progress activation energy Reactants energy released Reaction Progress	activation energy Reactants energy absorbed Reaction Progress	
$\Delta H = negative sign$	$\Delta H = positive sign$	
Bond forming	Bond breaking	

• Definition table

Enthalpy Changes	Definition	Equation	Exo/Endo
Standard Enthalpy Change of Reaction	 Enthalpy change The amount of reactants shown in the equation react to give products Under standard condition 		
Standard Enthalpy Change of Formation	 Enthalpy change 1 mole of a compound is formed from its elements Under standard conditions 		
Standard Enthalpy Change of Combustion	 Enthalpy change When 1 mole of substance is burnt in excess oxygen Under standard condition 		
Standard Enthalpy Change of Neutralisation	 Enthalpy change When 1 mole of water is formed by the reaction of an acid with an alkali Under standard condition 		
Standard Enthalpy Change of Solution	- Enthalpy change		

	 When 1 mole of solute is dissolved in a solvent to form an infinitely dilute solution Under standard condition
Standard Enthalpy Change of Hydration	 Enthalpy change When 1 mole of a hydrated salt is formed from 1 mole of the anhydrous salt Under standard condition
Standard Enthalpy Change of Atomisation	 Enthalpy change When 1 mole of gaseous atoms is formed from its element Under standard condition
Bond Energy	 The energy required to break 1 mole of covalent bonds between 2 atoms In gaseous state

• Hess Law

$$\begin{split} \Delta H_{reaction}^{\ominus} &= \sum \Delta H_{\mathbf{f}\,(products)}^{\ominus} - \sum \Delta H_{\mathbf{f}\,(reactants)}^{\ominus} \\ \Delta H_{reaction}^{\ominus} &= \sum \Delta H_{\mathbf{c}\,(reactants)}^{\ominus} - \sum \Delta H_{\mathbf{c}\,(products)}^{\ominus} \\ \text{Bond Energy} &= \text{Bond energy (reactants)} - \text{Bond energy (products)} \end{split}$$

$$Q = mc\Delta T \ (\Delta T = final\ temperature - initial\ temperature)$$

$$\Delta H = \frac{-mc\Delta T}{n}$$

Enthalpy Change of Neutralisation	Enthalpy Change of Solution	Enthalpy Change of Combustion
20cm ³ of 0.5 M of HCl mixed with	0.5g NaOH is dissolved in	5g of butanol – complete
20cm ³ , 0.5M of NaOH	500cm ³ of distilled water	combustion
$\Delta T = 8 ^{\circ}C$	$\Delta T = 5$ °C	To heat 200g of distilled water
		$\Delta T = 15 ^{\circ}C$

Exercises:

Determine ΔH_r of 2 CO₂ + 5 H₂ \rightarrow C₂H₂ + 4 H₂O, given:

 $\Delta H_f CO_2 = -393.5 \text{ kJmol}^{-1}$

 $\Delta H_f H_2 = 0.0 \text{ kJmol}^{-1}$

 $\Delta H_f C_2 H_2 = 226.7 \text{ kJmol}^{-1}$

 $\Delta H_f H_2 O = -241.8 \text{ kJmol}^{-1}$

Determine ΔH_f of C_3H_8O , given: $\Delta H_c C_3 H_8 O = -2010 \text{ kJmol}^{-1}$ $\Delta H_c C = -394 \text{ kJmol}^{-1}$

 $\Delta H_c H_2 = -286 \text{ kJmol}^{-1}$

Past Year Topical Questions Oct/Nov 2022 (21) Q3

(d) Sulfur, S_8 , reacts with chlorine to form several different chlorides. The most common are S_2Cl_2 and SCl_2 . SCl_2 forms when sulfur reacts with an excess of chlorine.

reaction 1
$$S_8(s) + 4Cl_2(g)$$

$$S_8(s) + 4Cl_2(g) \rightarrow 4S_2Cl_2(l)$$
 $\Delta H_r = -58.2 \text{ kJ mol}^{-1}$

$$S_2Cl_2(I) + Cl_2(g) \rightleftharpoons 2SCl_2(I)$$
 $\Delta H_r = -40.6 \text{ kJ mol}^{-1}$

$$\Delta H_{\rm r} = -40.6 \,\rm kJ \, mol^{-1}$$

(ii) Calculate the enthalpy change of formation, $\Delta H_{\rm f}$, of SC $l_2(I)$. You may find it useful to use Hess's Law to construct an energy cycle.

enthalpy change of formation of $SCl_2(I)$, $\Delta H_f = \dots kJ \text{mol}^{-1}$ [2]

May/June 2019 (11)

8 Two reactions and their enthalpy changes are shown.

$$2C(s) + 2H_2(g) \rightarrow C_2H_4(g) \qquad \Delta H^{\oplus} = +52.2 \text{ kJ mol}^{-1}$$

$$C_2H_2(g) + H_2(g) \rightarrow C_2H_4(g) \qquad \Delta H^{\oplus} = -175.8 \text{ kJ mol}^{-1}$$

These data can be used to calculate the enthalpy change for the reaction shown.

$$2C(s) + H_2(g) \rightarrow C_2H_2(g)$$
 $\Delta H^e = X$

What is the value of X?

- A -228.0 kJ mol⁻¹
- B -123.6 kJ mol⁻¹
- C +123.6 kJ mol⁻¹
- D +228.0 kJ mol⁻¹

Chemical Properties of Group 7 elements

(i) Oxidising and reducing power

Halogen	Oxidizing Power /	Halide Ion	Reducing Power /
	Reduction		Oxidation
F ₂	-Decreases	F-	-Increases
Cl ₂	-Increasing number of	Cl-	-Increasing number of
Br_2	electron-filled shells	Br-	electron-filled shells
I_2	going down the group	I-	going down the group
	-Increasing shielding		-Increasing shielding
	effect		effect
	-Weaker nuclear		-Weaker nuclear
	attraction		attraction
	-Harder to attract		-Easier to lose electron
	electron		

(ii) Silver nitrate and nitric acid

Silver Halide	Colour	Reaction with Ammonia	Solubility in ammonia
AgCl	White	$AgCl(s) + 2NH_3 (aq) \rightarrow$	Soluble in dilute, aqueous NH ₃ to give a
		$[Ag(NH_3)_2]+(aq)+Cl^{-}(aq)$	colourless solution
AgBr	Cream	$AgBr(s) + 2NH_3 (aq) \rightarrow$	Soluble in concentrated NH ₃ only
		$[Ag(NH_3)_2]+(aq)+Br^-(aq)$	
AgI	Yellow	-	Insoluble

- Ammonia acts as a ligand
- A **ligand** is an ion or molecule that donates its lone pair electron through coordinate bond/dative bond to metal ion