

Vector

(Past Year Topical Questions 2012-2017)

Oct/Nov 2012 (12)

1.

It is given that
$$\mathbf{a} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} 21 \\ 2 \end{pmatrix}$.

(i) Find |a + b + c|.

[2]

(ii) Find
$$\lambda$$
 and μ such that $\lambda \mathbf{a} + \mu \mathbf{b} = \mathbf{c}$.

[3]

May/June 2013 (11)

The figure shows points A, B and C with position vectors \mathbf{a} , \mathbf{b} and \mathbf{c} respectively, relative to an origin O. The point P lies on AB such that AP:AB=3:4. The point Q lies on OC such that OQ:QC=2:3.

(i) Express
$$\overrightarrow{AP}$$
 in terms of **a** and **b** and hence show that $\overrightarrow{OP} = \frac{1}{4}(\mathbf{a} + 3\mathbf{b})$. [3]

[3]

(iii) Given that $5\overrightarrow{PQ} = 6\overrightarrow{BC}$, find **c** in terms of **a** and **b**. May/June 2014 (11)

[2]

2.

Vectors **a**, **b** and **c** are such that
$$\mathbf{a} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} -5 \\ 2 \end{pmatrix}$.

(i) Show that $|\mathbf{a}| = |\mathbf{b} + \mathbf{c}|$.

(ii) Given that $\lambda \mathbf{a} + \mu \mathbf{b} = 7\mathbf{c}$, find the value of λ and of μ .

Oct/Nov 2014 (11)

12.

The position vectors of points A and B relative to an origin Q are A and A respectively. The point A is such that $\overrightarrow{OP} = \mu \overrightarrow{OA}$. The point A is such that $\overrightarrow{OQ} = \lambda \overrightarrow{OB}$. The lines AQ and BP intersect at the point A.

(i) Express
$$\overrightarrow{AQ}$$
 in terms of λ , \mathbf{a} and \mathbf{b} .

[1]

(ii) Express
$$\overrightarrow{BP}$$
 in terms of μ , a and b.

[1]

It is given that $3\overrightarrow{AR} = \overrightarrow{AQ}$ and $8\overrightarrow{BR} = 7\overrightarrow{BP}$.

(iii) Express \overrightarrow{OR} in terms of λ , \mathbf{a} and \mathbf{b} .

[2]

(iv) Express \overrightarrow{OR} in terms of μ , a and b.

[2]

(v) Hence find the value of μ and of λ .

[3]

May/June 2015 (12)

In the diagram $\overrightarrow{AB} = 4\mathbf{a}$, $\overrightarrow{BC} = \mathbf{b}$ and $\overrightarrow{DC} = 7\mathbf{a}$. The lines AC and DB intersect at the point X. Find, in terms of \mathbf{a} and \mathbf{b} ,

(i)
$$\overrightarrow{DA}$$
, [1]

(ii)
$$\overrightarrow{DB}$$
.

Given that $\overrightarrow{AX} = \overrightarrow{\lambda AC}$, find, in terms of a, b and $\overrightarrow{\lambda}$,

(iii)
$$\overrightarrow{AX}$$
, [1]

(iv)
$$\overrightarrow{DX}$$
. [2] Given that $\overrightarrow{DX} = \mu \overrightarrow{DB}$,

(v) find the value of λ and of μ . [4]

[3]

May/June 2016 (12)

3.

Vectors **a**, **b** and **c** are such that
$$\mathbf{a} = \begin{pmatrix} 2 \\ y \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}$.

(i) Given that $|\mathbf{a}| = |\mathbf{b} - \mathbf{c}|$, find the possible values of y.

(ii) Given that
$$\mu(\mathbf{b} + \mathbf{c}) + 4(\mathbf{b} - \mathbf{c}) = \lambda(2\mathbf{b} - \mathbf{c})$$
, find the value of μ and of λ . [3]

May/June 2017 (11)

5.

(a)

The diagram shows a figure \overrightarrow{OABC} , where $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$ and $\overrightarrow{OC} = \mathbf{c}$. The lines AC and OB intersect at the point M where M is the midpoint of the line AC.

(i) Find, in terms of a and c, the vector \overrightarrow{OM} .

[2]

(ii) Given that OM:MB = 2:3, find **b** in terms of **a** and **c**.

[2]

(b) Vectors i and j are unit vectors parallel to the x-axis and y-axis respectively.

The vector **p** has a magnitude of 39 units and has the same direction as -10i + 24j.

(i) Find p in terms of i and j.

[2]

(ii) Find the vector \mathbf{q} such that $2\mathbf{p} + \mathbf{q}$ is parallel to the positive y-axis and has a magnitude of 12 units. [3]

(iii) Hence show that $|\mathbf{q}| = k\sqrt{5}$, where k is an integer to be found.

[2]

May/June 2017 (12)

3.

Vectors i and j are unit vectors parallel to the x-axis and y-axis respectively.

(a) The vector v has a magnitude of 3√5 units and has the same direction as i - 2j. Find v giving your answer in the form a i + b j, where a and b are integers. [2]

(b) The velocity vector w makes an angle of 30° with the positive x-axis and is such that |w| = 2. Find w giving your answer in the form √c i + dj, where c and d are integers. [2]

