

Session 6

Q1,9702/o/n/34/21

You may not need to use all of the materials provided.

- 1. In this experiment you will investigate an electrical circuit.
 - (a)
 - (i)
 - Assemble the circuit shown in Fig. 1.1.

A, B, C and D are crocodile clips.

Connect A approximately half-way along wire 1.

• Measure and record the distance p between B and A, as shown in Fig. 1.1.

Close the switch. Test your circuit by placing C at end E of wire 2. The voltmeter reading should be non-zero. Record the voltmeter reading. voltmeter reading =V Open the switch. [1] (ii) Close the switch. Adjust the position of C on wire 2 until the voltmeter reading is as close as possible to zero. • The distance between C and E is q, as shown in Fig. 1.1. • Measure and record q. Open the switch. [1]

(b) Move A to a new position on wire 1. Measure and record p and repeat (a)(ii). Repeat until you have six sets of values for p and q.

Record your results in a table. Include values of 1 q and p q in your table.

		[10]
(c) (i) Pl	lot a graph of 1/q on the y-axis against p/q on the x-axis.	
(ii) Di	raw the straight line of best fit.	[3]
(iii)	Determine the gradient and y-intercept of this line.	[1]

gradient =	•••••
y-intercept =	
	[2]

(d) It is suggested that the quantities p and q are related by the equation

$$\frac{1}{q} = a\left(\frac{p}{q}\right) + b$$

where a and b are constants.

Use your answers in (c)(iii) to determine the values of a and b.

Give appropriate units.

a =	 	•••••	 •••••	•••••	•••••	 	
b =	 ••••	•••••	 •••••		•••••	 	
							[2]

[Total: 20]

Q2, 9702/33/O/N/18

You may not need to use all of the materials provided.

2. In this experiment, you will investigate the equilibrium of a system of three identical springs.(a) You have been provided with three springs attached to a ring.

Measure and record the unstretched length S of the coiled section of one of the springs, as shown in Fig. 2.1.

S =[1]

- (b)
 - (i)
 - Set up the apparatus as shown in Fig. 2.2.

- The total mass m of the mass hanger and the slotted masses should be 0.300kg.
- Adjust the position of the bosses so that the centres of the rods of the clamps are at the same height above the bench.
- Change the separation of the stands until the angle between the springs is 90°